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1 Introduction

1.1 Background

The best available global distributions are presently AquaMaps (Kaschner et al. 2006; Ready
et al. 2010) with supplementation by IUCN RedList range maps1. These have been used to
calculate the biodiversity within national waters (Halpern et al. 2012) as well as beyond in
the high seas (Visalli et al. 2020).

1.2 Goals

This book aims to capture the overview and details of modeling species distributions in the
marine environment for the purposes of advancing the status quo of global and U.S. national
species distributions along the following dimensions:

1. Space
The current AquaMaps distributions are 1/2º (~55 km at equator), whereas the best
available global bathymetry is 1/240º (< 0.5 km).

2. Time
The current AquaMaps distributions are based on static climatic averages over all seasons,
which does not capture temporal dynamics: seasonally within a year, nor long-term cli-
mate change trends. This will necessitate sampling the environment contemporaneously
with species observations before fitting the model and predicting to different environ-
mental snapshots.

3. Environment
Other environmental variables besides the initial physiographic (depth) and oceano-
graphic (temperature, chlorophyll, primary productivity and ice) may elicit an improved
statistical fit, related to species’ environmental niche. Some candidates include: temper-
ature fronts, eddy kinetic energy, distance from shore, distance from shelf.

4. Biology
Where sufficient observations exist, additional models should be developed highlighting
differences between:

1IUCN RedList range maps: https://www.iucnredlist.org/resources/spatial-data-download
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• Life stage, e.g. larval vs adult.

• Gender where varies, such as male sperm whales being more cosmopolitan.

• Subpopulations for understanding metapopulation dynamics

• Behavior, such as migrating, feeding or breeding.

By definition MBONMarine Biodiversity Observation Network; see MarineBON.org is a net-
work, so this is inclusive of and meant for all participants.

1.3 Motivations

• AquaMaps.org
AquaMaps (Kaschner et al. 2006; Ready et al. 2010) represents a massive amount of
work to gather parameters for >33.5K marine species, including areas to mask out.

• OBIS.org
The Ocean Biogeographic Information System (Klein et al. 2019; Grassle 2000) is the
central portal for continuously added observations with extra flags for quality control,
all of which makes marine SDMs possible.

• Modeling methods have dramatically improved over time and are ripe for fresh ap-
plication. The R package dismo originally came came out with an SDM vignette as
a practical supplement to their excellent review of SDMs (Elith and Leathwick 2009)
and using the Maxent algorithm (Elith et al. 2011). The raster package furthered that
(raster sdm) and now there’s terra sdm. Alongside these developments has been a boon
of cloud-computing, particularly Google Earth Engine (Gorelick et al. 2017; Campos et
al. 2023), allowing for dense global raster processing.

• The world is quickly moving towards a future trying to conserve 30% of the oceans by
2030, so called “30 by 30”. In the U.S., this is America the Beautiful initiative (Carroll,
Noss, and Stein 2022) for which MBONMarine Biodiversity Observation Network; see
MarineBON.org is well poised to inform (Fautin et al. 2010; Muller-Karger et al. 2018).
We need biodiversity indicators to track progress. This push for conservation is driven
by increasing impacts of climate change, as evidenced by marine heatwaves and shifts
in population distributions.
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Figure 1.1: Diagram of SDM data preparation and model fitting.
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1.4 Process

1.5 Contribute

We very much welcome your feedback, contributions and collaboration. As soon as you con-
tribute, we will add you to to the authors list. Here are a few ways to contribute from least
to most involved:

1. Email Ben (ben@ecoquants.com) with any suggestions, including suggested revisions of
this online book.

Note

Note that you can download this entire book as:

• Adobe Acrobat pdf to add annotations; or

• Microsoft Word docx to edit with Track Changes on.

These are available in the upper left navigation menu by clicking the download icon
.

2. Submit a New Issue on Github.

3. Click on “ Edit this Page” in the upper right. If you have a Github account, then you
can fork this repository from owner “marinebon” to your username, edit the page(s) and
submit a pull request. See Hello World - GitHub Docs.

4. If you are a regular contributor, you can be added to the collaborators of this repository
to push changes directly (without needing a pull request).

1.6 Features

This Quarto book has a few cool features:

• Multiple formats
From the singe set of source Quarto documents (*.qmd), several output formats are
rendered: html, pdf, docx. This is particularly helpful when suggesting changes. It also
lends itself well to being carved into manuscripts.

• Self-rendering
Github hosts the web pages (*.html), which get rendered from the source code (*.qmd)
using a Github Action. So edits can be made simply through the web interface and
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all outputs get updated (html, pdf, docx). It also ensures the reproducibility of the
document with a common setup environment.

• Mermaid diagrams
e.g., Figure 1.1, Figure 3.1, Figure 7.1

• Quarto document listings

• References

• Glossary

• Search
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Part I

Prepare
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2 Prepare

Prepare observations and environmental data for modeling
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3 Prepare

Figure 3.1: Diagram of SDM data preparation for model fitting.

• obs
observations: occurrences from OBIS; masked by FAO regions defined by AquaMaps
(Skyttner 2020)

– presence
OBIS: species occurrence

– absence
OBIS not-species, but same family

• env
environment

• tbl
table of observations (presence and absence) with environmental values
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3.1 Environmental Predictors

3.1.1 Physiographic

• depth
Bathymetric Depth

• d2coast
Distance to Coast

• d2shelf
Distance to Shelf

3.1.2 Time Varying

• vgpm
Vertically integrated primary Productivity model

3.1.3 Depth & Time Varying

• temp
Temperature, either sea-surface temperature (SST) or some modeled product from Hy-
COM, ROMS or Copernicus

• salin
Salinity

13



4 Occurrences

Fetch presence observations and filter for quality control

To describe:

• robis

• Filter based on quality flags

• Remove outliers

– eks
Tidy and Geospatial Kernel Smoothing for spatially filtering outlier observations

4.1 Fetch OBIS

4.2 Filter occurrences

14

https://cran.r-project.org/web/packages/eks/vignettes/tidysf_kde.html


Figure 4.1: Source: Kernel density estimates for tidy and geospatial data in the eks package
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5 Pseudo-absences

Generate pseudo-absence or background environmental values to compare with occurrence
environment

Describe various strategies for generating pseudo-absences.

• Pseudo-absences • biomod2

– (Barbet-Massin et al. 2012)

5.1 All background

A common Maxent strategy is to feed all background points into Maxent, and then to use the
resulting distribution as a null model. This is the default strategy in Maxent (Phillips et al.
2017; Phillips, Anderson, and Schapire 2006; Phillips and Dudík 2008).

5.2 Mask by FAO areas

The FAO areas applicable to species are included in the aquamapsdata, presumably from
evaluating OBIS observations and the literature.

5.3 Use occurrences from same Family, different species

By using the same family, we can be sure that the pseudo-absences are ecologically similar to
the species of interest.

16
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6 Environment

Extract environmental predictors (static and/or dynamic) from various sources for observations
(presence and pseudo-absence)

Environmental data are used to fit the model and predict distribution onto the seascape, e.g.
Table 6.1.

librarian::shelf(
here, knitr, readr)

library(here)
library(knitr)
library(readr)

d <- read_csv(
here("data/Roberts-2016_env-predictors.csv"),
show_col_types = F)

options(knitr.kable.NA = '')
kable(d, format="pipe")

Table 6.1: Example of environmental predictors from Roberts et al. (2016).

Type
/Covariates Resolution

Time
rangeDescription

Physiographic
Depth,
Slope

30
arc
sec

Seafloor depth and slope, derived from SRTM30-PLUS global
bathymetry20

DistToShore,
DistTo125m,
DistTo300m,
DistTo1500m

30
arc
sec

Distance to the closest shoreline, excluding Bermuda and Sable
Island, and various ecologically-relevant isobaths20
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Table 6.1: Example of environmental predictors from Roberts et al. (2016).

Type
/Covariates Resolution

Time
rangeDescription

DistToCanyon,
DistTo-
Canyon
OrSeamount

30
arc
sec

Distance to the closest submarine canyon, and to the closest
canyon or seamount21

SST &
Winds
SST,
DistToFront

0.2°,
daily

1991-
2014

Foundation sea surface temperature (SST), from GHRSST Level 4
CMC SST22, and distance to the closest SST front identified with
the Canny edge detection algorithm23

WindSpeed 0.25°,
daily

1991-
2014

30-day running mean of NOAA NCDC 1/4° Blended Sea Winds24

Currents
TKE, EKE 0.25°,

daily
1993-
2013

Total kinetic energy (TKE) and eddy kinetic energy (EKE), from
Aviso 1/4° DT-MADT geostrophic currents

DistToEddy,
Dist-
ToAEddy,
DistTo-
CEddy

0.25°,
weekly

1993-
2013

Distance to the ring of the closest geostrophic eddy having any
(DistToEddy), anticyclonic (DistToAEddy), or cyclonic
(DistToCEddy) polarity, from Aviso 1/4° DT-MADT using a
revision of the Chelton et al. algorithm25; we tested eddies at least
9, 4, and 0 weeks old

Biological
Chl 9

km,
daily

1997-
2014

GSM merged SeaWiFS/Aqua/MERIS/VIIRS chlorophyll (Chl) a
concentration26, smoothed with a 3D Gaussian smoother to reduce
data loss to < 10%

VGPM,
CumVGPM45,
CumVGPM90

9
km,
8
days

1997-
2014

Net primary production (mg C m-2 day-1) derived from SeaWiFS
and Aqua using the Vertically Generalized Production Model
(VPGM)27; we tested the original 8 day estimates as well as 45
and 90 day running accumulations

PkPP,
PkPB

0.25°,
weekly

1997-
2013

Zooplankton production (PkPP; g m-2 day-1) and biomass (PkPB;
g m-2) from the SEAPODYM ocean model28

EpiMnkPP,
EpiMnkPB

0.25°,
weekly

1997-
2013

Epipelagic micronekton production (EpiMnkPP; g m-2 day-1) and
biomass (EpiMnkPB; g m-2) from the SEAPODYM model(28)

6.0.1 Physiographic

• depth
Bathymetric Depth
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• d2coast
Distance to Coast

• d2shelf
Distance to Shelf

6.0.2 Time Varying

• vgpm
Vertically integrated primary Productivity model

6.0.3 Depth & Time Varying

• temp
Temperature, either sea-surface temperature (SST) or some modeled product from Hy-
COM, ROMS or Copernicus

• salin
Salinity
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Part II

Model
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7 Model

Model the distribution of a species

Figure 7.1: Diagram of SDM Modeling processes.
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8 Split

Split data into training (to fit) and test (to evaluate prediction)

Data is often split so that ~20% of the observations (presence and absence) are set aside from
the model fitting to be used for model evaluation.

The k-fold function is often used to split the data into k groups, and then the model is fit
k times, each time using a different group as the test data and the remaining groups as the
training data.
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9 Fit

Fit environmental relationship distinguishing presence from absence of species

Model fitting in theory is quite complex, but quite simple in practice, with feeding the prepared
data into the modeling function.

However there are MANY modeling techniques from which to choose. For instance check out
238 entries in 6 Available Models | The caret Package.
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10 Calibrate

Calibrate model fit, i.e., model selection

The process of refining the model to only the most relevant environmental predictor terms is
commonly called “Model Selection.” One of the most cited scientific paper of all time (Akaike
1974) is based on taking a most parsimonious approach to this process – the so called Akaike
Information Criteria (AIC).

It is important to avoid using environmental predictors that are correlated with each other,
since the effect of a predictor on the response could be the ecologically inverse, the result of
explaining variance on the residuals of the other correlated predictor.
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11 Predict

Predict distribution of the species with environmental relationship from fitted model

The prediction step applies the environmental relationships from the fitted model to a new set
of data, typically the seascape of interest, and perhaps with some sort of temporal snapshot
(e.g., climatic annual or monthly average).
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12 Evaluate

Evaluate performance of the predicted model with the test data

Model evaluation uses the set aside test data from the earlier splitting to evaluate how well the
model predicts the response of presence or absence. Since the test response data is binary [0,1]
and the prediction from the model is continuous [0-1], a threshold needs to be applied to assign
to convert the continuous response to binary. This is often performed through a Receiver
Operator Characteristic (ROC) curve (Figure 12.1), which evaluates at each threshold the
confusion matrix (Table 12.1).

Table 12.1: Confusion matrix to understand predicted versus observed.

Predicted
0 (absence) 1 (presence)

Observed 0 (absence) True absence False presence
1 (presence) False absence True presence

From the ROC curve, the area under the curve (AUC) is calculated, which is a measure of
the model’s ability to distinguish between presence and absence. AUC values range from 0 to
1, with 0.5 being no better than random, and 1 being perfect.

12.1 More Resources

• Classification: ROC Curve and AUC | Machine Learning | Google for Developers
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Figure 12.1: ROC curve generated by showing rates of false positive vs false negative as func-
tion of changing the threshold value (rainbow colors). Source: ROCR: visualizing
classifier performance in R
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Part III

Combine
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13 Combine

Combine SDMs from the same or multiple species

We look at combining SDMs to calculate biodiversity based on addressing questions of interest
and relevance.

• See joint species distribution models (jSDMs) per Hartig et al (2023, Box 2) that includes
species co-occurrence.
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14 Ensemble

• biomod2
Species distribution modeling, calibration and evaluation, ensemble modeling
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15 Mosaic

Figure 15.1: Hierarchy of preferred model outputs based on response type and age.

This is illustrated well by Figure 15.1.
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16 Taxa

Group SDMs by taxanomy

Taxonomic groups (Tittensor et al. 2010) in the high seas (Visalli et al. 2020) were pack-
aged with simple query statements in the draft R package gmbi (global marine biodiversity
indicators).

32
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17 Indicators

Calculate indicators of ecological or management interest beyond taxonomic groupings

17.1 Diversity

Here are the classic diversity indices from the R package vegan:

𝐻 = −
𝑆

∑
𝑖=1

𝑝𝑖 log𝑏 𝑝𝑖 Shannon-Weaver

𝐷1 = 1 −
𝑆

∑
𝑖=1

𝑝2
𝑖 Simpson

𝐷2 = 1
∑𝑆

𝑖=1 𝑝2
𝑖

inverse Simpson

where 𝑝𝑖 is the proportion of species 𝑖, and 𝑆 is the number of species so that
∑𝑆

𝑖=1 𝑝𝑖 = 1, and 𝑏 is the base of the logarithm.

17.2 Endemism

Endemism could be measured as a function of the presence or average of the species range,
given by either a global SDM converted to a binary range or using the existing IUCN range
maps.

17.3 Extinction Risk

This is provided by IUCN RedList, as well as sometimes at a national level, such as Nature-
Serve’s Conservation Status Ranks for the U.S.
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17.4 Functional Importance

17.5 Habitat Forming

Habitat forming species, such as coral, mangrove, seagrasses and kelp are especially important
for biodiversity and ecosystem services.

17.6 Phylogenetic Uniqueness

17.7 Richness

17.8 Sensitivity

Sensitivity to specific human activities, such as shipping or fishing. Some activities may
have different stages of development, such as construction versus operation of offshore wind
energy.

17.9 Trophic Index
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Part IV

Share
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18 Share

Metadata standards and portals to share SDMs
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19 Metadata

Metadata standards for reproducible and stackable SDMs

What standards (Araújo et al. 2019; Kass et al. 2023; Zurell et al. 2020) are required for
models to be hosted?

• input

– input observations

– environmental predictors
and range of values in original observations

– model type and object

• outputs

– model object

– mean prediction

– measure(s) of uncertainty
standard error, standard deviation (sd), confidence intervals (e.g., 5% and 95%),
coefficient of variation (cv)…
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20 Portal

Portal to host and combine for user-specific needs

Can we supplement an existing portal or create a new one to host different types of model
outputs and combine them?

What are publishing workflows for existing portals?

• Existing portals used to share SDMs

– AquaMaps Standardized distribution maps for over 33,500 species of fishes, marine
mammals and invertebrates

– DisMAP
Distribution Mapping and Analysis Portal

– OBIS-SEAMAP Model Repository
World Data Center for Marine Mammal, Seabird, Sea Turtle, Shark & Ray Distri-
butions

– NCEI
National Centers for Environmental Information (NOAA)

– DataONE
Data Observation Network for Earth

– ArcGIS Online
Esri’s commercial data sharing platform

• Candidate portal
MarineSpeciesMaps.org
BDB registered the domain. Similar to:

– MarineRegions.org
spatial authority

– MarineSpecies.org
taxonomic authority

38
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Glossary

glossary::glossary_table(as_kable=F) |>
knitr::kable("pipe", escape = F, row.names = F)

term definition
MBON Marine Biodiversity Observation Network; see MarineBON.org
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Part V

Explorations
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AquaMaps Downscaled

Downscale AquaMaps from 1/2º to GEBCO 1/240º using Google Earth Engine and Shiny.

• website

• code
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https://shiny.marinebon.app/am-fine/
https://github.com/marinebon/aquamaps-downscaled/tree/main/sp-map


AquaMaps Envelope

Extract and plot AquaMaps environmental envelope, ramp rasters, using R.

• website

• code

45

https://marinebon.github.io/aquamaps-downscaled/
https://github.com/marinebon/aquamaps-downscaled/blob/main/index.qmd


AquaMaps Treemap

Select a Sanctuary or Draw a polygon to filter to 1/2º AquaMaps species and view as Table
or treemap Plot for interactive taxonomic composition.

• website

• code

This app uses aquamapsdata after translating from sqlite (slow) and raster (deprecated)
R functions to duckdb (fast) and terra (superceding) R functions. We can use these distri-
butional data to calculate place-based indicators with anticipation of the distributional data
getting improved upon in 2024 by AquaX and others.
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https://shiny.marinebon.app/am-sanct/
https://github.com/marinebon/aquamapsduckdb/tree/main/inst/app
https://raquamaps.github.io/aquamapsdata/articles/intro.html


SDM predicts

Predict species distribution of N Atlantic right whale using OBIS occcurrences and predicts
package in R.

• website

• code
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https://marinebon.github.io/sdm-explore/sdm_1.html
https://github.com/marinebon/sdm-explore/blob/main/sdm_1.qmd


OBIS Top Classes

Extract the species with the most numerous observations by unique Class from the OBIS
parquet archive in R.

• website

• code

48

https://marinebon.github.io/sdm-explore/explore_obis.html
https://github.com/marinebon/sdm-explore/blob/main/explore_obis.qmd


Software

R

Most packages have not yet migrated from using the deprecated raster R package to the new
terra package, except for biomod2 (ref?).

• biomod2
Species distribution modeling, calibration and evaluation, ensemble modeling

• eks
Tidy and Geospatial Kernel Smoothing for spatially filtering outlier observations

• predicts
New R library using terra for predicting from fitted model

Python

• Xarray
Xarray makes working with labelled multi-dimensional arrays in Python simple, efficient,
and fun!
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https://biomodhub.github.io/biomod2/
https://biomodhub.github.io/biomod2/
https://cran.r-project.org/web/packages/eks/vignettes/tidysf_kde.html
https://docs.xarray.dev/en/stable/


Figure 1: Source: Kernel density estimates for tidy and geospatial data in the eks package
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https://cran.r-project.org/web/packages/eks/vignettes/tidysf_kde.html


Google Earth Engine

• XEE
XEE is a new Python package for Earth Engine that provides a set of functions to
facilitate the use of Earth Engine API. It is designed to be used in Jupyter notebooks
and Google Colab. Documentation
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https://github.com/google/Xee
https://google.github.io/Xee/
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