## **MarineSDMs**

<span id="page-0-0"></span>**Marine Species Distribution Models**

Benjamin D. Best

2024-03-15

## **Table of contents**







## <span id="page-4-0"></span>**1 Introduction**

### <span id="page-4-1"></span>**1.1 Background**

The best available global distributions are presently AquaMaps (Kaschner et al. 2006; Ready et al. 20[1](#page-4-3)0) with supplementation by IUCN RedList range maps<sup>1</sup>. These have been used to calculate the biodiversity within national waters (Halpern et al. 2012) as well as beyond in the high seas (Visalli et al. 2020).

### <span id="page-4-2"></span>**1.2 Goals**

This book aims to capture the overview and details of modeling species distributions in the marine environment for the purposes of advancing the status quo of global and U.S. national species distributions along the following dimensions:

#### 1. **Space**

The current AquaMaps distributions are  $1/2^{\circ}$  (~55 km at equator), whereas the best available global bathymetry is  $1/240^{\circ}$  (< 0.5 km).

#### 2. **Time**

The current AquaMaps distributions are based on static climatic averages over all seasons, which does not capture temporal dynamics: seasonally within a year, nor long-term climate change trends. This will necessitate sampling the environment contemporaneously with species observations before fitting the model and predicting to different environmental snapshots.

#### 3. **Environment**

Other environmental variables besides the initial physiographic (depth) and oceanographic (temperature, chlorophyll, primary productivity and ice) may elicit an improved statistical fit, related to species' environmental niche. Some candidates include: temperature fronts, eddy kinetic energy, distance from shore, distance from shelf.

#### 4. **Biology**

Where sufficient observations exist, additional models should be developed highlighting differences between:

<span id="page-4-3"></span><sup>1</sup> IUCN RedList range maps: <https://www.iucnredlist.org/resources/spatial-data-download>

- **Life stage**, e.g. larval vs adult.
- **Gender** where varies, such as male sperm whales being more cosmopolitan.
- **Subpopulations** for understanding metapopulation dynamics
- **Behavior**, such as migrating, feeding or breeding.

By definition MBONMarine Biodiversity Observation Network; see MarineBON.org is a network, so this is inclusive of and meant for all participants.

### <span id="page-5-0"></span>**1.3 Motivations**

#### • [AquaMaps.org](https://aquamaps.org/)

AquaMaps (Kaschner et al. 2006; Ready et al. 2010) represents a massive amount of work to gather parameters for >33.5K marine species, including areas to mask out.

• <OBIS.org>

The Ocean Biogeographic Information System (Klein et al. 2019; Grassle 2000) is the central portal for continuously added observations with extra flags for quality control, all of which makes marine SDMs possible.

- **Modeling** methods have dramatically improved over time and are ripe for fresh application. The R package dismo originally came came out with an [SDM vignette](https://cran.r-project.org/web/packages/dismo/vignettes/sdm.pdf) as a practical supplement to their excellent review of SDMs (Elith and Leathwick 2009) and using the Maxent algorithm (Elith et al. 2011). The raster package furthered that (raster [sdm\)](https://rspatial.org/raster/sdm/) and now there's [terra](https://rspatial.org/sdm/) sdm. Alongside these developments has been a boon of cloud-computing, particularly Google Earth Engine (Gorelick et al. 2017; Campos et al. 2023), allowing for dense global raster processing.
- The world is quickly moving towards a future trying to conserve 30% of the oceans by 2030, so called "**[30 by 30](https://en.wikipedia.org/wiki/30_by_30)**". In the U.S., this is [America the Beautiful](https://www.noaa.gov/america-the-beautiful) initiative (Carroll, Noss, and Stein 2022) for which MBONMarine Biodiversity Observation Network; see MarineBON.org is well poised to inform (Fautin et al. 2010; Muller-Karger et al. 2018). We need biodiversity indicators to track progress. This push for conservation is driven by increasing impacts of **climate change**, as evidenced by marine heatwaves and shifts in population distributions.

<span id="page-6-0"></span>

Figure 1.1: Diagram of SDM data preparation and model fitting.

### <span id="page-7-0"></span>**1.4 Process**

### <span id="page-7-1"></span>**1.5 Contribute**

We very much welcome your feedback, contributions and collaboration. As soon as you contribute, we will add you to to the authors list. Here are a few ways to contribute from least to most involved:

1. Email Ben (ben@ecoquants.com) with any suggestions, including suggested revisions of this online book.

i Note

Note that you can download this entire book as:

- **A** Adobe Acrobat [pdf](https://marinebon.github.io/MarineSDMs/MarineSDMs.pdf) to add annotations; or
- **M** Microsoft Word [docx](https://marinebon.github.io/MarineSDMs/MarineSDMs.docx) to edit with Track Changes on.

These are available in the upper left navigation menu by clicking the download icon

- 2. Submit a [New Issue](https://github.com/marinebon/MarineSDMs/issues/new/choose) on Github.
- 3. Click on " Edit this Page" in the upper right. If you have a Github account, then you can fork this repository from owner "marinebon" to your username, edit the page(s) and submit a pull request. See [Hello World - GitHub Docs.](https://docs.github.com/en/get-started/quickstart/hello-world)
- 4. If you are a regular contributor, you can be added to the collaborators of this repository to push changes directly (without needing a pull request).

### <span id="page-7-2"></span>**1.6 Features**

.

This Quarto book has a few cool features:

• Multiple formats

From the singe set of source Quarto documents (\*.qmd), several output formats are rendered: html, pdf, docx. This is particularly helpful when suggesting changes. It also lends itself well to being carved into manuscripts.

• Self-rendering

Github hosts the web pages (\*.html), which get rendered from the source code (\*.qmd) using a Github Action. So edits can be made simply through the web interface and

all outputs get updated (html, pdf, docx). It also ensures the reproducibility of the document with a common setup environment.

- Mermaid diagrams e.g., Figure [1.1](#page-6-0), Figure [3.1](#page-11-1), Figure [7.1](#page-20-1)
- Quarto document listings
- References
- Glossary
- Search

# **Part I**

# <span id="page-9-0"></span>**Prepare**

# <span id="page-10-0"></span>**2 Prepare**

Prepare observations and environmental data for modeling

## <span id="page-11-0"></span>**3 Prepare**

<span id="page-11-1"></span>

Figure 3.1: Diagram of SDM data preparation for model fitting.

• **obs**

observations: occurrences from OBIS; masked by FAO regions defined by AquaMaps (Skyttner 2020)

**– presence**

OBIS: species occurrence

- **– absence** OBIS not-species, but same family
- **env**

environment

• **tbl**

table of observations (presence and absence) with environmental values

### <span id="page-12-0"></span>**3.1 Environmental Predictors**

### <span id="page-12-1"></span>**3.1.1 Physiographic**

- depth Bathymetric Depth
- d2coast Distance to Coast
- d2shelf Distance to Shelf

### <span id="page-12-2"></span>**3.1.2 Time Varying**

• vgpm

Vertically integrated primary Productivity model

### <span id="page-12-3"></span>**3.1.3 Depth & Time Varying**

• temp

Temperature, either sea-surface temperature (SST) or some modeled product from Hy-COM, ROMS or Copernicus

• salin Salinity

## <span id="page-13-0"></span>**4 Occurrences**

Fetch presence observations and filter for quality control

To describe:

- robis
- Filter based on quality flags
- Remove outliers

**–** [eks](https://cran.r-project.org/web/packages/eks/vignettes/tidysf_kde.html) *Tidy and Geospatial Kernel Smoothing for spatially filtering outlier observations*

## <span id="page-13-1"></span>**4.1 Fetch OBIS**

### <span id="page-13-2"></span>**4.2 Filter occurrences**



Figure 4.1: Source: Kernel density estimates for tidy and geospatial data in the eks package

## <span id="page-15-0"></span>**5 Pseudo-absences**

Generate pseudo-absence or background environmental values to compare with occurrence environment

Describe various strategies for generating pseudo-absences.

- [Pseudo-absences biomod2](https://biomodhub.github.io/biomod2/articles/vignette_pseudoAbsences.html)
	- **–** (Barbet-Massin et al. 2012)

### <span id="page-15-1"></span>**5.1 All background**

A common Maxent strategy is to feed all background points into Maxent, and then to use the resulting distribution as a null model. This is the default strategy in Maxent (Phillips et al. 2017; Phillips, Anderson, and Schapire 2006; Phillips and Dudík 2008).

### <span id="page-15-2"></span>**5.2 Mask by FAO areas**

The FAO areas applicable to species are included in the aquamapsdata, presumably from evaluating OBIS observations and the literature.

### <span id="page-15-3"></span>**5.3 Use occurrences from same Family, different species**

By using the same family, we can be sure that the pseudo-absences are ecologically similar to the species of interest.

## <span id="page-16-0"></span>**6 Environment**

Extract environmental predictors (static and/or dynamic) from various sources for observations (presence and pseudo-absence)

Environmental data are used to fit the model and predict distribution onto the seascape, e.g. Table [6.1](#page-16-1).

```
librarian::shelf(
 here, knitr, readr)
library(here)
library(knitr)
library(readr)
d <- read_csv(
  here("data/Roberts-2016_env-predictors.csv"),
  show_col_types = F)
options(knitr.kable.NA = '')
kable(d, format="pipe")
```


<span id="page-16-1"></span>

| <b>Type</b>        | Time                   |                                                                                                                     |  |  |
|--------------------|------------------------|---------------------------------------------------------------------------------------------------------------------|--|--|
| /Covariates        | ResolutingeDescription |                                                                                                                     |  |  |
| DistToCanyon,30    |                        | Distance to the closest submarine canyon, and to the closest                                                        |  |  |
| DistTo-            | arc                    | canyon or seamount $21$                                                                                             |  |  |
| Canyon             | sec                    |                                                                                                                     |  |  |
| OrSeamount         |                        |                                                                                                                     |  |  |
| SST &              |                        |                                                                                                                     |  |  |
| Winds              |                        |                                                                                                                     |  |  |
| SST,               |                        | $0.2^{\circ}$ , 1991-Foundation sea surface temperature (SST), from GHRSST Level 4                                  |  |  |
| <b>DistToFront</b> |                        | daily 2014 CMC SST22, and distance to the closest SST front identified with<br>the Canny edge detection algorithm23 |  |  |
| WindSpeed          | daily 2014             | 0.25°, 1991-30-day running mean of NOAA NCDC 1/4° Blended Sea Winds24                                               |  |  |
| <b>Currents</b>    |                        |                                                                                                                     |  |  |
| TKE, EKE           |                        | 0.25°, 1993-Total kinetic energy (TKE) and eddy kinetic energy (EKE), from                                          |  |  |
|                    |                        | daily 2013 Aviso $1/4^{\circ}$ DT-MADT geostrophic currents                                                         |  |  |
| DistToEddy,        |                        | $0.25^{\circ}$ , 1993-Distance to the ring of the closest geostrophic eddy having any                               |  |  |
| Dist-              |                        | weekly2013 (DistToEddy), anticyclonic (DistToAEddy), or cyclonic                                                    |  |  |
| ToAEddy,           |                        | (DistToCEddy) polarity, from Aviso 1/4° DT-MADT using a                                                             |  |  |
| DistTo-            |                        | revision of the Chelton et al. algorithm25; we tested eddies at least                                               |  |  |
| CEddy              |                        | 9, 4, and 0 weeks old                                                                                               |  |  |
| <b>Biological</b>  |                        |                                                                                                                     |  |  |
| Chl                | 9                      | 1997-GSM merged SeaWiFS/Aqua/MERIS/VIIRS chlorophyll (Chl) a                                                        |  |  |
|                    | km,                    | 2014 concentration 26, smoothed with a 3D Gaussian smoother to reduce                                               |  |  |
|                    | daily                  | data loss to $< 10\%$                                                                                               |  |  |
| VGPM,              | 9                      | 1997-Net primary production (mg C m-2 day-1) derived from SeaWiFS                                                   |  |  |
| CumVGPM45, km,     |                        | 2014 and Aqua using the Vertically Generalized Production Model                                                     |  |  |
| CumVGPM90 8        |                        | $(VPGM)27$ ; we tested the original 8 day estimates as well as 45                                                   |  |  |
|                    | days                   | and 90 day running accumulations                                                                                    |  |  |
| PkPP,              |                        | 0.25°, 1997-Zooplankton production (PkPP; g m-2 day-1) and biomass (PkPB;                                           |  |  |
| PkPB               |                        | weekly2013 g m-2) from the SEAPODYM ocean model28                                                                   |  |  |
| EpiMnkPP,          |                        | 0.25°, 1997-Epipelagic micronekton production (EpiMnkPP; g m-2 day-1) and                                           |  |  |
| EpiMnkPB           |                        | weekly2013 biomass (EpiMnkPB; g m-2) from the SEAPODYM model(28)                                                    |  |  |

Table 6.1: Example of environmental predictors from Roberts et al. (2016).

### <span id="page-17-0"></span>**6.0.1 Physiographic**

• depth

Bathymetric Depth

- d2coast Distance to Coast
- d2shelf Distance to Shelf

### <span id="page-18-0"></span>**6.0.2 Time Varying**

• vgpm

Vertically integrated primary Productivity model

### <span id="page-18-1"></span>**6.0.3 Depth & Time Varying**

• temp

Temperature, either sea-surface temperature (SST) or some modeled product from Hy-COM, ROMS or Copernicus

• salin Salinity

# <span id="page-19-0"></span>**Part II Model**

## <span id="page-20-0"></span>**7 Model**

Model the distribution of a species

<span id="page-20-1"></span>

Figure 7.1: Diagram of SDM Modeling processes.

## <span id="page-21-0"></span>**8 Split**

Split data into training (to fit) and test (to evaluate prediction)

Data is often split so that  $\sim 20\%$  of the observations (presence and absence) are set aside from the model fitting to be used for model evaluation.

The k-fold function is often used to split the data into k groups, and then the model is fit k times, each time using a different group as the test data and the remaining groups as the training data.

## <span id="page-22-0"></span>**9 Fit**

Fit environmental relationship distinguishing presence from absence of species

Model fitting in theory is quite complex, but quite simple in practice, with feeding the prepared data into the modeling function.

However there are MANY modeling techniques from which to choose. For instance check out 238 entries in [6 Available Models | The caret Package](https://topepo.github.io/caret/available-models.html).

## <span id="page-23-0"></span>**10 Calibrate**

Calibrate model fit, i.e., model selection

The process of refining the model to only the most relevant environmental predictor terms is commonly called "Model Selection." One of the most cited scientific paper of all time (Akaike 1974) is based on taking a most parsimonious approach to this process – the so called Akaike Information Criteria (AIC).

It is important to avoid using environmental predictors that are correlated with each other, since the effect of a predictor on the response could be the ecologically inverse, the result of explaining variance on the residuals of the other correlated predictor.

## <span id="page-24-0"></span>**11 Predict**

Predict distribution of the species with environmental relationship from fitted model

The prediction step applies the environmental relationships from the fitted model to a new set of data, typically the seascape of interest, and perhaps with some sort of temporal snapshot (e.g., climatic annual or monthly average).

## <span id="page-25-0"></span>**12 Evaluate**

Evaluate performance of the predicted model with the test data

Model evaluation uses the set aside test data from the earlier splitting to evaluate how well the model predicts the response of presence or absence. Since the test response data is binary [0,1] and the prediction from the model is continuous [0-1], a threshold needs to be applied to assign to convert the continuous response to binary. This is often performed through a Receiver Operator Characteristic (**ROC**) curve (Figure [12.1\)](#page-26-0), which evaluates at each threshold the **confusion matrix** (Table [12.1\)](#page-25-2).

<span id="page-25-2"></span>Table 12.1: Confusion matrix to understand predicted versus observed.



From the ROC curve, the area under the curve (**AUC**) is calculated, which is a measure of the model's ability to distinguish between presence and absence. AUC values range from 0 to 1, with 0.5 being no better than random, and 1 being perfect.

### <span id="page-25-1"></span>**12.1 More Resources**

• [Classification: ROC Curve and AUC | Machine Learning | Google for Developers](https://developers.google.com/machine-learning/crash-course/classification/roc-and-auc)

<span id="page-26-0"></span>

Figure 12.1: ROC curve generated by showing rates of false positive vs false negative as function of changing the threshold value (rainbow colors). Source: [ROCR: visualizing](https://cran.rstudio.com/web/packages/ROCR/vignettes/ROCR.html) [classifier performance in R](https://cran.rstudio.com/web/packages/ROCR/vignettes/ROCR.html)

# **Part III**

# <span id="page-27-0"></span>**Combine**

## <span id="page-28-0"></span>**13 Combine**

Combine SDMs from the same or multiple species

We look at combining SDMs to calculate biodiversity based on addressing questions of interest and relevance.

• See joint species distribution models (jSDMs) per Hartig et al (2023, Box 2) that includes species co-occurrence.

## <span id="page-29-0"></span>**14 Ensemble**

### • [biomod2](https://biomodhub.github.io/biomod2/)

*Species distribution modeling, calibration and evaluation, ensemble modeling*



<span id="page-30-0"></span>

<span id="page-30-1"></span>

Figure 15.1: Hierarchy of preferred model outputs based on response type and age.

This is illustrated well by Figure [15.1](#page-30-1).

## <span id="page-31-0"></span>**16 Taxa**

Group SDMs by taxanomy

Taxonomic groups (Tittensor et al. 2010) in the high seas (Visalli et al. 2020) were packaged with simple query statements in the draft R package [gmbi](https://marinebon.github.io/gmbi/articles/calc.html#assign-taxonomic-groups) (global marine biodiversity indicators).

## <span id="page-32-0"></span>**17 Indicators**

Calculate indicators of ecological or management interest beyond taxonomic groupings

### <span id="page-32-1"></span>**17.1 Diversity**

Here are the classic diversity indices from the R package vegan:

$$
H = -\sum_{i=1}^{S} p_i \log_b p_i
$$
 Shannon-Weaver  

$$
D_1 = 1 - \sum_{i=1}^{S} p_i^2
$$
 Simpson  

$$
D_2 = \frac{1}{\sum_{i=1}^{S} p_i^2}
$$
 inverse Simpson

where  $p_i$  is the proportion of species i, and S is the number of species so that  $\sum_{i=1}^{S} p_i = 1$ , and b is the base of the logarithm.

### <span id="page-32-2"></span>**17.2 Endemism**

Endemism could be measured as a function of the presence or average of the species range, given by either a global SDM converted to a binary range or using the existing IUCN range maps.

### <span id="page-32-3"></span>**17.3 Extinction Risk**

This is provided by IUCN RedList, as well as sometimes at a national level, such as Nature-Serve's [Conservation Status Ranks](https://www.natureserve.org/conservation-status-assessment) for the U.S.

### <span id="page-33-0"></span>**17.4 Functional Importance**

### <span id="page-33-1"></span>**17.5 Habitat Forming**

Habitat forming species, such as coral, mangrove, seagrasses and kelp are especially important for biodiversity and ecosystem services.

### <span id="page-33-2"></span>**17.6 Phylogenetic Uniqueness**

### <span id="page-33-3"></span>**17.7 Richness**

### <span id="page-33-4"></span>**17.8 Sensitivity**

Sensitivity to specific human activities, such as shipping or fishing. Some activities may have different stages of development, such as construction versus operation of offshore wind energy.

## <span id="page-33-5"></span>**17.9 Trophic Index**

<span id="page-34-0"></span>**Part IV**

**Share**

# <span id="page-35-0"></span>**18 Share**

Metadata standards and portals to share SDMs

## <span id="page-36-0"></span>**19 Metadata**

Metadata standards for reproducible and stackable SDMs

What standards (Araújo et al. 2019; Kass et al. 2023; Zurell et al. 2020) are required for models to be hosted?

- input
	- **–** input observations
	- **–** environmental predictors and range of values in original observations
	- **–** model type and object
- outputs
	- **–** model object
	- **–** mean prediction
	- **–** measure(s) of uncertainty standard error, standard deviation (sd), confidence intervals (e.g., 5% and 95%), coefficient of variation (cv)…

## <span id="page-37-0"></span>**20 Portal**

Portal to host and combine for user-specific needs

Can we supplement an existing portal or create a new one to host different types of model outputs and combine them?

What are publishing workflows for existing portals?

- Existing portals used to share SDMs
	- **–** [AquaMaps](https://aquamaps.org/) *Standardized distribution maps for over 33,500 species of fishes, marine mammals and invertebrates*
	- **–** [DisMAP](https://apps-st.fisheries.noaa.gov/dismap/)

*Distribution Mapping and Analysis Portal*

- **–** [OBIS-SEAMAP Model Repository](https://seamap.env.duke.edu/models/) *World Data Center for Marine Mammal, Seabird, Sea Turtle, Shark & Ray Distributions*
- **–** [NCEI](https://www.ncei.noaa.gov/) *National Centers for Environmental Information (NOAA)*
- **–** [DataONE](https://www.dataone.org/) *Data Observation Network for Earth*
- **–** [ArcGIS Online](https://www.arcgis.com/index.html) *Esri's commercial data sharing platform*

• Candidate portal

<MarineSpeciesMaps.org>

BDB registered the domain. Similar to:

- **– MarineRegions.org** *spatial authority*
- **– MarineSpecies.org** *taxonomic authority*

## <span id="page-38-0"></span>**References**

- Akaike, H. 1974. "A New Look at the Statistical Model Identification." *IEEE Transactions on Automatic Control* 19 (6): 716723.
- Araújo, Miguel B., Robert P. Anderson, A. Márcia Barbosa, Colin M. Beale, Carsten F. Dormann, Regan Early, Raquel A. Garcia, et al. 2019. "Standards for Distribution Models in Biodiversity Assessments." *Science Advances* 5 (1): eaat4858. [https://doi.org/10.1126/](https://doi.org/10.1126/sciadv.aat4858) [sciadv.aat4858](https://doi.org/10.1126/sciadv.aat4858).
- Barbet-Massin, Morgane, Frédéric Jiguet, Cécile Hélène Albert, and Wilfried Thuiller. 2012. "Selecting Pseudo-Absences for Species Distribution Models: How, Where and How Many?" *Methods in Ecology and Evolution* 3 (2): 327–38. [https://doi.org/10.1111/j.2041-210X.](https://doi.org/10.1111/j.2041-210X.2011.00172.x) [2011.00172.x](https://doi.org/10.1111/j.2041-210X.2011.00172.x).
- Campos, João C., Nuno Garcia, João Alírio, Salvador Arenas-Castro, Ana C. Teodoro, and Neftalí Sillero. 2023. "Ecological Niche Models Using MaxEnt in Google Earth Engine: Evaluation, Guidelines and Recommendations." *Ecological Informatics* 76 (September): 102147. [https://doi.org/10.1016/j.ecoinf.2023.102147.](https://doi.org/10.1016/j.ecoinf.2023.102147)
- Carroll, C., R. F. Noss, and Bruce A. Stein. 2022. "US Conservation Atlas Needs Biodiversity Data." *Science* 376 (6589): 144–45. <https://doi.org/10.1126/science.abo0526>.
- Elith, Jane, and John R. Leathwick. 2009. "Species Distribution Models: Ecological Explanation and Prediction Across Space and Time." *Annual Review of Ecology, Evolution, and Systematics* 40 (1): 677–97. <https://doi.org/10.1146/annurev.ecolsys.110308.120159>.
- Elith, Jane, Steven J. Phillips, Trevor Hastie, Miroslav Dudík, Yung En Chee, and Colin J. Yates. 2011. "A Statistical Explanation of MaxEnt for Ecologists." *Diversity and Distributions* 17 (1): 43–57. <http://dx.doi.org/10.1111/j.1472-4642.2010.00725.x>.
- Fautin, Daphne, Penelope Dalton, Lewis S. Incze, Jo-Ann C. Leong, Clarence Pautzke, Andrew Rosenberg, Paul Sandifer, et al. 2010. "An Overview of Marine Biodiversity in United States Waters." *PLoS ONE* 5 (8): e11914. [https://doi.org/10.1371/journal.pone.0011914.](https://doi.org/10.1371/journal.pone.0011914)
- Gorelick, Noel, Matt Hancher, Mike Dixon, Simon Ilyushchenko, David Thau, and Rebecca Moore. 2017. "Google Earth Engine: Planetary-Scale Geospatial Analysis for Everyone." *Remote Sensing of Environment*, Big remotely sensed data: Tools, applications and experiences, 202 (December): 18–27. [https://doi.org/10.1016/j.rse.2017.06.031.](https://doi.org/10.1016/j.rse.2017.06.031)
- Grassle, J. Frederick. 2000. "The Ocean Biogeographic Information System (OBIS): An on-Line, Worldwide Atlas for Accessing, Modeling and Mapping Marine Biological Data in a Multidimensional Geographic Context." *Oceanography* 13 (3): 5–7. [https://www.jstor.](https://www.jstor.org/stable/43924357) [org/stable/43924357](https://www.jstor.org/stable/43924357).
- Halpern, Benjamin S., Catherine Longo, Darren Hardy, Karen L. McLeod, Jameal F. Samhouri, Steven K. Katona, Kristin Kleisner, et al. 2012. "An Index to Assess the Health and

Benefits of the Global Ocean." *Nature*. [https://doi.org/10.1038/nature11397.](https://doi.org/10.1038/nature11397)

- Hartig, Florian, Nerea Abrego, Alex Bush, Jonathan M. Chase, Gurutzeta Guillera-Arroita, Mathew A. Leibold, Otso Ovaskainen, et al. 2023. "Novel Community Data in Ecology-Properties and Prospects." *Trends in Ecology & Evolution* 0 (0). [https://doi.org/10.1016/](https://doi.org/10.1016/j.tree.2023.09.017) [j.tree.2023.09.017.](https://doi.org/10.1016/j.tree.2023.09.017)
- Kaschner, K., R. Watson, A. W. Trites, and D. Pauly. 2006. "Mapping World-Wide Distributions of Marine Mammal Species Using a Relative Environmental Suitability (RES) Model." *Marine Ecology Progress Series* 316 (July): 285–310. [https://doi.org/10.3354/meps316285.](https://doi.org/10.3354/meps316285)
- Kass, Jamie M., Gonzalo E. Pinilla-Buitrago, Andrea Paz, Bethany A. Johnson, Valentina Grisales-Betancur, Sarah I. Meenan, Dean Attali, et al. 2023. "Wallace 2: A Shiny App for Modeling Species Niches and Distributions Redesigned to Facilitate Expansion via Module Contributions." *Ecography* 2023 (3): e06547. [https://doi.org/10.1111/ecog.06547.](https://doi.org/10.1111/ecog.06547)
- Klein, Eduardo, Ward Appeltans, Pieter Provoost, Hanieh Saeedi, Abigail Benson, Lenore Bajona, Ana Carolina Peralta, and R. Sky Bristol. 2019. "OBIS Infrastructure, Lessons Learned, and Vision for the Future." *Frontiers in Marine Science* 6. <https://www.frontiersin.org/articles/10.3389/fmars.2019.00588>.
- Muller-Karger, Frank E., Patricia Miloslavich, Nicholas J. Bax, Samantha Simmons, Mark J. Costello, Isabel Sousa Pinto, Gabrielle Canonico, et al. 2018. "Advancing Marine Biological Observations and Data Requirements of the Complementary Essential Ocean Variables (EOVs) and Essential Biodiversity Variables (EBVs) Frameworks." *Frontiers in Marine Science* 5. [https://doi.org/10.3389/fmars.2018.00211.](https://doi.org/10.3389/fmars.2018.00211)
- Phillips, Steven J., Robert P. Anderson, Miroslav Dudík, Robert E. Schapire, and Mary E. Blair. 2017. "Opening the Black Box: An Open-Source Release of Maxent." *Ecography* 40 (7): 887–93. <https://doi.org/10.1111/ecog.03049>.
- Phillips, Steven J., Robert P. Anderson, and Robert E. Schapire. 2006. "Maximum Entropy Modeling of Species Geographic Distributions." *Ecological Modelling* 190 (3): 231–59. <https://doi.org/10.1016/j.ecolmodel.2005.03.026>.
- Phillips, Steven J., and Miroslav Dudík. 2008. "Modeling of Species Distributions with Maxent: New Extensions and a Comprehensive Evaluation." *Ecography* 31 (2): 161–75. [https://doi.org/10.1111/j.0906-7590.2008.5203.x.](https://doi.org/10.1111/j.0906-7590.2008.5203.x)
- Ready, Jonathan, Kristin Kaschner, Andy B. South, Paul D. Eastwood, Tony Rees, Josephine Rius, Eli Agbayani, Sven Kullander, and Rainer Froese. 2010. "Predicting the Distributions of Marine Organisms at the Global Scale." *Ecological Modelling* 221 (3): 467–78. <https://doi.org/10.1016/j.ecolmodel.2009.10.025>.
- Roberts, Jason J., Benjamin D. Best, Laura Mannocci, Ei Fujioka, Patrick N. Halpin, Debra L. Palka, Lance P. Garrison, et al. 2016. "Habitat-Based Cetacean Density Models for the u.s. Atlantic and Gulf of Mexico." *Scientific Reports* 6 (March): 22615. [https://doi.org/](https://doi.org/10.1038/srep22615) [10.1038/srep22615](https://doi.org/10.1038/srep22615).
- Skyttner, Markus. 2020. "Aquamapsdata: Curated Data from AquaMaps.org." [https://](https://github.com/raquamaps/aquamapsdata) [github.com/raquamaps/aquamapsdata.](https://github.com/raquamaps/aquamapsdata)
- Tittensor, Derek P., Camilo Mora, Walter Jetz, Heike K. Lotze, Daniel Ricard, Edward Vanden Berghe, and Boris Worm. 2010. "Global Patterns and Predictors of Marine Biodiversity Across Taxa." *Nature* 466 (7310): 1098–1101. [https://doi.org/10.1038/nature09329.](https://doi.org/10.1038/nature09329)
- Visalli, Morgan E., Benjamin D. Best, Reniel B. Cabral, William W. L. Cheung, Nichola A. Clark, Cristina Garilao, Kristin Kaschner, et al. 2020. "Data-Driven Approach for Highlighting Priority Areas for Protection in Marine Areas Beyond National Jurisdiction." *Marine Policy*, March, 103927. [https://doi.org/10.1016/j.marpol.2020.103927.](https://doi.org/10.1016/j.marpol.2020.103927)
- Zurell, Damaris, Janet Franklin, Christian König, Phil J. Bouchet, Carsten F. Dormann, Jane Elith, Guillermo Fandos, et al. 2020. "A Standard Protocol for Reporting Species Distribution Models." *Ecography* 43 (9): 1261–77. <https://doi.org/10.1111/ecog.04960>.

## <span id="page-41-0"></span>**Glossary**

```
glossary::glossary_table(as_kable=F) |>
  knitr::kable("pipe", escape = F, row.names = F)
```
term definition MBON Marine Biodiversity Observation Network; see <MarineBON.org>

# **Part V**

# <span id="page-42-0"></span>**Explorations**

## <span id="page-43-0"></span>**AquaMaps Downscaled**

 $\bullet$   $\bullet$  [website](https://shiny.marinebon.app/am-fine/)

Downscale AquaMaps from 1/2º to GEBCO 1/240º using Google Earth Engine and Shiny.

 $\bullet$   $\bullet$  [code](https://github.com/marinebon/aquamaps-downscaled/tree/main/sp-map) **Species DRAFT AquaMaps** Balaenoptera musculus  $\overline{\phantom{0}}$ **O** Parameters Downscaling PASADENA SAN BEF Fine (1/240°)  $\ddot{}$ **LOS ANGELES** Riverside <u>.</u> Anaheim LONG BEACH **IRVINE** Coarse (1/2°) O **Suitability**  $0\%$ 20% ANSIE 40% 60% 80% 100% 50 km 30 mi Leaflet | © OpenStreetMap contributors © CARTO

## <span id="page-44-0"></span>**AquaMaps Envelope**

Extract and plot AquaMaps environmental envelope, ramp rasters, using R.

- $\bullet$   $\bullet$  [website](https://marinebon.github.io/aquamaps-downscaled/)
- $\bullet$   $\bullet$  [code](https://github.com/marinebon/aquamaps-downscaled/blob/main/index.qmd)



## <span id="page-45-0"></span>**AquaMaps Treemap**

Select a Sanctuary or Draw a polygon to filter to  $1/2^{\circ}$  AquaMaps species and view as Table or treemap Plot for interactive taxonomic composition.

- $\bullet$   $\bullet$  [website](https://shiny.marinebon.app/am-sanct/)
- $\cdot$   $\mathbf{\Omega}$  [code](https://github.com/marinebon/aquamapsduckdb/tree/main/inst/app)



This app uses [aquamapsdata](https://raquamaps.github.io/aquamapsdata/articles/intro.html) after translating from sqlite (slow) and raster (deprecated) R functions to duckdb (fast) and terra (superceding) R functions. We can use these distributional data to calculate place-based indicators with anticipation of the distributional data getting improved upon in 2024 by AquaX and others.

## <span id="page-46-0"></span>**SDM predicts**

Predict species distribution of N Atlantic right whale using OBIS occcurrences and predicts package in R.

- $\bullet$   $\bigoplus$  [website](https://marinebon.github.io/sdm-explore/sdm_1.html)
- $\bullet$   $\bullet$  [code](https://github.com/marinebon/sdm-explore/blob/main/sdm_1.qmd)



## <span id="page-47-0"></span>**OBIS Top Classes**

Extract the species with the most numerous observations by unique Class from the OBIS parquet archive in R.

- $\bigoplus$  [website](https://marinebon.github.io/sdm-explore/explore_obis.html)
- $\bullet$   $\bullet$  [code](https://github.com/marinebon/sdm-explore/blob/main/explore_obis.qmd)



## <span id="page-48-0"></span>**Software**

## <span id="page-48-1"></span>**R**

Most packages have not yet migrated from using the deprecated raster R package to the new terra package, except for [biomod2](https://biomodhub.github.io/biomod2/) (ref?).

### • [biomod2](https://biomodhub.github.io/biomod2/)

*Species distribution modeling, calibration and evaluation, ensemble modeling*



#### • [eks](https://cran.r-project.org/web/packages/eks/vignettes/tidysf_kde.html)

*Tidy and Geospatial Kernel Smoothing for spatially filtering outlier observations*

• [predicts](#page-0-0)

*New R library using terra for predicting from fitted model*

## <span id="page-48-2"></span>**Python**

• [Xarray](https://docs.xarray.dev/en/stable/)

Xarray makes working with labelled multi-dimensional arrays in Python simple, efficient, and fun!



Figure 1: Source: [Kernel density estimates for tidy and geospatial data in the eks package](https://cran.r-project.org/web/packages/eks/vignettes/tidysf_kde.html)

## <span id="page-50-0"></span>**Google Earth Engine**

• [XEE](https://github.com/google/Xee)

XEE is a new Python package for Earth Engine that provides a set of functions to facilitate the use of Earth Engine API. It is designed to be used in Jupyter notebooks and Google Colab. [Documentation](https://google.github.io/Xee/)